Vapor Adsorption Measurements with Two-Dimensional Membranes

利用二维膜进行蒸汽吸附测量

阅读:7
作者:Petr Dementyev, Neita Khayya, Jakob Kreie, Armin Gölzhäuser

Abstract

Two-dimensional (2D) membranes display extraordinary mass transfer properties, in particular for the permeation of gaseous substances. Their ultimate thickness not only ensures the shortest diffusion pathways, but also makes the membrane surface play a significant role in accommodating and guiding the permeating molecules. As saturated vapors of water and organic solvents are often observed to pass 2D membranes faster than inert gases, condensation is believed to be responsible for surface-mediated transport. Here, we present a spectroscopic experiment to probe adsorption of condensable species on 2D membranes under realistic conditions. Polarization-modulation infrared reflection absorption spectroscopy (PM IRAS) is coupled with a reaction chamber and a vacuum system to control the vaporous environments. The measurements are demonstrated to yield quantitative information on the amount of adsorbates onto supported 2D layers. As a case study, the azeotropic mixture of water and propanol is revealed to maintain its molar composition upon interaction with carbon nanomembranes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。