The Design and Characterization of a Strong Bio-Ink for Meniscus Regeneration

用于半月板再生的强力生物墨水的设计和表征

阅读:7
作者:Jingwei Lu, Jianhao Huang, Jing Jin, Chunmei Xie, Bin Xue, Jiancheng Lai, Biao Cheng, Lan Li, Qing Jiang

Abstract

The meniscus is vital to the mechanical function of the knee, while it is frequently harmed because it bears a heavy load. A strong bio-ink for meniscus regeneration was prepared for the future meniscal tissue engineering. The prepared bio-ink consists of poly (vinyl alcohol) and decellularized extracellular matrix (PVA/dECM). The mechanical properties and the rheological features were explored to evaluate the effects of freezing/thawing cycles and alkaline treatment process. The printability was verified using a three-dimensional printer. The endothelial cells were employed to assess the biocompatibility. Finally, a 12-week rabbit meniscus defect model was established to evaluate the meniscus regeneration capability. We found that the bio-ink by soaking in alkaline for 40 min and 20 freezing/thawing cycles demonstrated excellent mechanical properties. The Young's modulus reached 0.49 MPa and the stress limitation was 2.9 MPa. The results also showed good printability and biocompatibility of the proposed bio-ink in vitro. The PVA/dECM hydrogel healed the meniscus defect after 12 weeks of implantation. The articular cartilage and subchondral bone exhibited normal microstructure and composition. These results suggested that the PVA/dECM hydrogel could be a promising solution to repair meniscal lesions with preventive effects against degenerative meniscal tears and post-traumatic arthritis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。