Set1 and Kdm5 are antagonists for H3K4 methylation and regulators of the major conidiation-specific transcription factor gene ABA1 in Fusarium fujikuroi

Set1 和 Kdm5 是 H3K4 甲基化的拮抗剂,也是藤仓镰刀菌中主要分生孢子特异性转录因子基因 ABA1 的调节剂

阅读:6
作者:Slavica Janevska, Ulrich Güldener, Michael Sulyok, Bettina Tudzynski, Lena Studt

Abstract

Here we present the identification and characterization of the H3K4-specific histone methyltransferase Set1 and its counterpart, the Jumonji C demethylase Kdm5, in the rice pathogen Fusarium fujikuroi. While Set1 is responsible for all detectable H3K4me2/me3 in this fungus, Kdm5 antagonizes the H3K4me3 mark. Notably, deletion of both SET1 and KDM5 mainly resulted in the upregulation of genome-wide transcription, also affecting a large set of secondary metabolite (SM) key genes. Although H3K4 methylation is a hallmark of actively transcribed euchromatin, several SM gene clusters located in subtelomeric regions were affected by Set1 and Kdm5. While the regulation of many of them is likely indirect, H3K4me2 levels at gibberellic acid (GA) genes correlated with GA biosynthesis in the wild type, Δkdm5 and OE::KDM5 under inducing conditions. Whereas Δset1 showed an abolished GA3 production in axenic culture, phytohormone biosynthesis was induced in planta, so that residual amounts of GA3 were detected during rice infection. Accordingly, Δset1 exhibited a strongly attenuated, though not abolished, virulence on rice. Apart from regulating secondary metabolism, Set1 and Kdm5 function as activator and repressor of conidiation respectively. They antagonistically regulate H3K4me3 levels and expression of the major conidiation-specific transcription factor gene ABA1 in F. fujikuroi.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。