DTL promotes cancer progression by PDCD4 ubiquitin-dependent degradation

DTL通过PDCD4泛素依赖性降解促进癌症进展

阅读:6
作者:Haoran Cui, Qin Wang, Zhenchuan Lei, Maoxiao Feng, Zhongxi Zhao, Yunshan Wang, Guangwei Wei

Background

Ubiquitin E3 ligase CUL4A plays important oncogenic roles in the development of cancers. DTL, one of the CUL4-DDB1 associated factors (DCAFs), may involve in the process of cancer development. Programmed cell death 4 (PDCD4) is a tumor suppressor gene involved in cell apoptosis, transformation, invasion and tumor progression.

Conclusions

Our results elucidated that DTL enhanced the motility and proliferation of cancer cells through degrading PDCD4 to promote the development of cancers.

Methods

Affinity-purification mass spectrometry was used to identify potential DTL interaction proteins. Co-immunoprecipitation (Co-IP) was performed to verify protein interaction between DTL and PDCD4. mRNA levels in cancer cells and tissues were detected by Quantitative real-time PCR. Lentivirus was used to establish stable overexpression and knocking down cell lines for DTL and PDCD4. Transwell and wound healing assays were used to determine migration ability of cancer cells. Matrigel assay was used to determine invasion ability of cancer cells. MTT and colony formation assays were used to evaluate proliferation of cancer cells.

Results

In this study, programmed cell death 4 (PDCD4) was identified as a potential substrate of DTL. Co-IP and immunofluorescence assays further confirmed the interaction between DTL and PDCD4. Moreover, DTL overexpression decreased the protein level and accelerated the degradation rate of PDCD4. Through in vitro ubiquitination experiment, we proved that PDCD4 was degraded by DTL through ubiquitination. Clinically DTL was significantly up-regulated in cancer tissues than that in normal tissues. The survival curves showed that cancer patients with higher DTL expression owned lower survival rate. Functional experiments showed that DTL not only enhanced the proliferation and migration abilities of cancer cells, but also promoted the tumorigenesis in nude mice. Rescued experiment results demonstrated that silencing PDCD4 simultaneous with DTL recovered the phenotypes defect caused by DTL knocking down. Conclusions: Our results elucidated that DTL enhanced the motility and proliferation of cancer cells through degrading PDCD4 to promote the development of cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。