Commercial articulated collaborative in situ 3D bioprinter for skin wound healing

用于皮肤伤口愈合的商业化铰接式协作原位 3D 生物打印机

阅读:11
作者:Aleksandr A Levin, Pavel A Karalkin, Elizaveta V Koudan, Fedor S Senatov, Vladislav A Parfenov, Vladislav A Lvov, Stanislav V Petrov, Frederico D A S Pereira, Alexey V Kovalev, Egor O Osidak, Sergey P Domogatsky, Natalya E Manturova, Vladimir A Kasyanov, Natalia S Sergeeva, Vadim L Zorin, Yusef D Kh

Abstract

In situ bioprinting is one of the most clinically relevant techniques in the emerging bioprinting technology because it could be performed directly on the human body in the operating room and it does not require bioreactors for post-printing tissue maturation. However, commercial in situ bioprinters are still not available on the market. In this study, we demonstrated the benefit of the originally developed first commercial articulated collaborative in situ bioprinter for the treatment of full-thickness wounds in rat and porcine models. We used an articulated and collaborative robotic arm from company KUKA and developed original printhead and correspondence software enabling in situ bioprinting on curve and moving surfaces. The results of in vitro and in vivo experiments show that in situ bioprinting of bioink induces a strong hydrogel adhesion and enables printing on curved surfaces of wet tissues with a high level of fidelity. The in situ bioprinter was convenient to use in the operating room. Additional in vitro experiments (in vitro collagen contraction assay and in vitro 3D angiogenesis assay) and histological analyses demonstrated that in situ bioprinting improves the quality of wound healing in rat and porcine skin wounds. The absence of interference with the normal process of wound healing and even certain improvement in the dynamics of this process strongly suggests that in situ bioprinting could be used as a novel therapeutic modality in wound healing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。