De Novo Transcriptome Assembly of Agave H11648 by Illumina Sequencing and Identification of Cellulose Synthase Genes in Agave Species

通过 Illumina 测序对龙舌兰 H11648 进行从头转录组组装以及对龙舌兰物种中的纤维素合酶基因进行鉴定

阅读:7
作者:Xing Huang, Mei Xiao, Jingen Xi, Chunping He, Jinlong Zheng, Helong Chen, Jianming Gao, Shiqing Zhang, Weihuai Wu, Yanqiong Liang, Li Xie, Kexian Yi2

Abstract

Agave plants are important crassulacean acid metabolism (CAM) plants with multiple agricultural uses, such as being used in tequila and fiber production. Agave hybrid H11648 ((A. amaniensis Trel. and Nowell × A. angustifolia Haw.) × A. amaniensis) is the main cultivated Agave species for fiber production in large tropical areas around the world. In this study, we conducted a transcriptome analysis of A. H11648. About 49.25 million clean reads were obtained by Illumina paired-end sequencing. De novo assembly produced 148,046 unigenes with more than 40% annotated in public databases, or matched homologs in model plants. More homologous gene pairs were found in Asparagus genome than in Arabidopsis or rice, which indicated a close evolutionary relationship between Asparagus and A. H11648. CAM-related gene families were also characterized as previously reported in A.americana. We further identified 12 cellulose synthase genes (CesA) in Asparagus genome and 38 CesA sequences from A. H11648, A.americana, A.deserti and A.tequilana. The full-length CesA genes were used as references for the cloning and assembly of their homologs in other Agave species. As a result, we obtained CesA1/3/4/5/7 genes with full-length coding region in the four Agave species. Phylogenetic and expression analysis revealed a conserved evolutionary pattern, which could not explain the distinct fiber traits in different Agave species. We inferred that transcriptional regulation might be responsible for Agave fiber development. This study represents the transcriptome of A. H11648, which would expand the number of Agave genes and benefit relevant studies of Agave fiber development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。