Real-time allelic assays of SARS-CoV-2 variants to enhance sewage surveillance

实时检测 SARS-CoV-2 变异株的等位基因以加强污水监测

阅读:16
作者:Xiaoqing Xu, Yu Deng, Jiahui Ding, Xiawan Zheng, Shuxian Li, Lei Liu, Ho-Kwong Chui, Leo L M Poon, Tong Zhang

Abstract

To effectively control the ongoing outbreaks of fast-spreading SARS-CoV-2 variants, there is an urgent need to add rapid variant detection and discrimination methods to the existing sewage surveillance systems established worldwide. We designed eight assays based on allele-specific RT-qPCR for real-time allelic discrimination of eight SARS-CoV-2 variants (Alpha, Beta, Gamma, Delta, Omicron, Lambda, Mu, and Kappa) in sewage. In silico analysis of the designed assays for identifying SARS-CoV-2 variants using more than four million SARS-CoV-2 variant sequences yielded ∼100% specificity and >90% sensitivity. All assays could sensitively discriminate and quantify target variants at levels as low as 10 viral RNA copy/µL with minimal cross-reactivity to the corresponding nontarget genotypes, even for sewage samples containing mixtures of SARS-CoV-2 variants with differential abundances. Integration of this method into the routine sewage surveillance in Hong Kong successfully identified the Beta variant in a community sewage. Complete concordance was observed between the results of viral whole-genome sequencing and those of our novel assays in sewage samples that contained exclusively the Delta variant discharged by a clinically diagnosed COVID-19 patient living in a quarantine hotel. Our assays in this method also provided real-time discrimination of the newly emerging Omicron variant in sewage two days prior to clinical test results in another quarantine hotel in Hong Kong. These novel allelic discrimination assays offer a rapid, sensitive, and specific way for detecting multiple SARS-CoV-2 variants in sewage and can be directly integrated into the existing sewage surveillance systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。