A novel class of fast-acting antimalarial agents: Substituted 15-membered azalides

一类新型速效抗疟药:取代的15元氮杂内酯

阅读:7
作者:Mihaela Peric, Dijana Pešić, Sulejman Alihodžić, Andrea Fajdetić, Esperanza Herreros, Francisco Javier Gamo, Iñigo Angulo-Barturen, María Belén Jiménez-Díaz, Santiago Ferrer-Bazaga, María S Martínez, Domingo Gargallo-Viola, Amanda Mathis, Albane Kessler, Mihailo Banjanac, Jasna Padovan, Vlatka Bence

Background and purpose

Efficacy of current antimalarial treatments is declining as a result of increasing antimalarial drug resistance, so new and potent antimalarial drugs are urgently needed. Azithromycin, an azalide antibiotic, was found useful in malaria therapy, but its efficacy in humans is low. Experimental approach: Four compounds belonging to structurally different azalide classes were tested and their activities compared to azithromycin and chloroquine. in vitro evaluation included testing against sensitive and resistant Plasmodium falciparum, cytotoxicity against HepG2 cells, accumulation and retention in human erythrocytes, antibacterial activity, and mode of action studies (delayed death phenotype and haem polymerization). in vivo assessment enabled determination of pharmacokinetic profiles in mice, rats, dogs, and monkeys and in vivo efficacy in a humanized mouse model. Key

Purpose

Efficacy of current antimalarial treatments is declining as a result of increasing antimalarial drug resistance, so new and potent antimalarial drugs are urgently needed. Azithromycin, an azalide antibiotic, was found useful in malaria therapy, but its efficacy in humans is low. Experimental approach: Four compounds belonging to structurally different azalide classes were tested and their activities compared to azithromycin and chloroquine. in vitro evaluation included testing against sensitive and resistant Plasmodium falciparum, cytotoxicity against HepG2 cells, accumulation and retention in human erythrocytes, antibacterial activity, and mode of action studies (delayed death phenotype and haem polymerization). in vivo assessment enabled determination of pharmacokinetic profiles in mice, rats, dogs, and monkeys and in vivo efficacy in a humanized mouse model. Key

Results

Novel fast-acting azalides were highly active in vitro against P. falciparum strains exhibiting various resistance patterns, including chloroquine-resistant strains. Excellent antimalarial activity was confirmed in a P. falciparum murine model by strong inhibition of haemozoin-containing trophozoites and quick clearance of parasites from the blood. Pharmacokinetic analysis revealed that compounds are metabolically stable and have moderate oral bioavailability, long half-lives, low clearance, and substantial exposures, with blood cells as the preferred compartment, especially infected erythrocytes. Fast anti-plasmodial action is achieved by the high accumulation into infected erythrocytes and interference with parasite haem polymerization, a mode of action different from slow-acting azithromycin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。