Differential endocannabinoid regulation of baroreflex-evoked sympathoinhibition in normotensive versus hypertensive rats

内源性大麻素对正常血压大鼠和高血压大鼠压力反射诱发的交感神经抑制的差异调节

阅读:4
作者:D T Brozoski, C Dean, F A Hopp, C J Hillard, J L Seagard

Abstract

Previously, we found that endocannabinoids acting at cannabinoid 1 receptors in the nucleus tractus solitarius prolonged baroreflex inhibition of renal sympathetic nerve activity in normotensive Sprague Dawley rats. The current study investigated whether endocannabinoid signaling was altered in spontaneously hypertensive rats, a model marked by elevated sympathetic activity and depressed baroreflex responses. The effects of endocannabinoids in the nucleus tractus solitarius on baroreflex control of renal sympathetic nerve activity evoked by systemic pressor changes or by direct stimulation of nucleus tractus solitarius neurons, which produced depressor and sympathoinhibitory responses, were studied in Sprague Dawley rats, Wistar Kyoto rats, and spontaneously hypertensive rats. Evoked responses were compared before and after microinjection of AM404, which prolonged actions of endogenous endocannabinoids, or microinjection of an endocannabinoid, anandamide, into the baroreceptive region of the nucleus tractus solitarius. AM404 microinjections significantly prolonged evoked sympathoinhibition in Sprague Dawley and Wistar Kyoto rats, but had little effect in spontaneously hypertensive rats. Microinjections of anandamide prolonged sympathoinhibition in Sprague Dawley rats, with lesser effects in Wistar Kyoto rats and no effects in spontaneously hypertensive rats. Parallel studies found that density of binding sites of endocannabinoids in the nucleus tractus solitarius was significantly reduced in spontaneously hypertensive rats versus the normotensive rats. Results indicate that attenuated function of the endocannabinoid system in the nucleus tractus solitarius of spontaneously hypertensive rats resulted in less modulation of baroreflex-evoked sympathoinhibition and that reduced cannabinoid 1 receptor density could contribute to blunted baroreflex-induced sympathoinhibition and elevated sympathetic tone characteristic of spontaneously hypertensive rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。