Metabolic characteristics of imatinib resistance in chronic myeloid leukaemia cells

慢性粒细胞白血病伊马替尼耐药细胞的代谢特征

阅读:6
作者:Jelena Klawitter, Douglas J Kominsky, Jaimi L Brown, Jost Klawitter, Uwe Christians, Dieter Leibfritz, Junia V Melo, S Gail Eckhardt, Natalie J Serkova

Background and purpose

Early detection of resistance development is crucial for imatinib-based treatment in chronic myeloid leukaemia (CML) patients. We aimed to distinguish metabolic markers of cell resistance to imatinib. Experimental approach: Two human imatinib-sensitive CML cell lines: LAMA84-s and K562-s, and their resistant counterparts: LAMA84-r and K562-r (both resistant to 1 microM imatinib), and K562-R (5 microM) were analysed by nuclear magnetic resonance spectroscopy to assess global metabolic profiling, including energy state, glucose and phospholipid metabolism. Key

Purpose

Early detection of resistance development is crucial for imatinib-based treatment in chronic myeloid leukaemia (CML) patients. We aimed to distinguish metabolic markers of cell resistance to imatinib. Experimental approach: Two human imatinib-sensitive CML cell lines: LAMA84-s and K562-s, and their resistant counterparts: LAMA84-r and K562-r (both resistant to 1 microM imatinib), and K562-R (5 microM) were analysed by nuclear magnetic resonance spectroscopy to assess global metabolic profiling, including energy state, glucose and phospholipid metabolism. Key

Results

We found, by Western blotting and flow cytometry, that the levels of Bcr-Abl tyrosine kinase and multi-drug resistance p-glycoprotein were inconsistent among resistant clones. On the other hand, phospholipid metabolism and lactate production were highly predictive for cell response to imatinib. As previously reported, sensitive cells showed significantly decreased glycolytic activity (lactate) and phospholipid synthesis (phosphocholine) as well as increased phospholipid catabolism (glycerophosphocholine) after 24 h of 1 microM imatinib treatment, which correlated with inhibition of cell proliferation and induction of apoptosis. In contrast to their sensitive counterparts, the K562-r, K562-R and LAMA84-r maintained increased phospholipid synthesis and glycolytic lactate production in the presence of 1 microM (K562-r and LAMA84-r) and 5 microM (K562-R) imatinib. Conclusions and implications: Specific metabolic markers for early detection of imatinib resistance, including increased glycolytic activity and phospholipid turnover, can be identified in resistant clones. Once validated in human isolated leukocytes, they may be used to monitor the responsiveness of CML patients to treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。