Inactivation of SARS-CoV-2 on salt-coated surfaces: an in vitro study

盐涂层表面对 SARS-CoV-2 的灭活作用:一项体外研究

阅读:15
作者:Monika Gsell, Xavier Bulliard, Sandra Schorderet Weber, Yang Xiang, Samuel Constant, Sandro Steiner, Silvia Biselli, Raphael Pugin, Michele Palmieri, Andreas Hogg, Manuel C Peitsch, Julia Hoeng, Adrian Stan

Abstract

In the COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), face masks have become a very important safety measure against the main route of transmission of the virus: droplets and aerosols. Concerns that masks contaminated with SARS-CoV-2 infectious particles could be a risk for self-contamination have emerged early in the pandemic as well as solutions to mitigate this risk. The coating of masks with sodium chloride, an antiviral and non-hazardous to health chemical, could be an option for reusable masks. To assess the antiviral properties of salt coatings deposited onto common fabrics by spraying and dipping, the present study established an in vitro bioassay using three-dimensional airway epithelial cell cultures and SARS-CoV-2 virus. Virus particles were given directly on salt-coated material, collected, and added to the cell cultures. Infectious virus particles were measured by plaque forming unit assay and in parallel viral genome copies were quantified over time. Relative to noncoated material, the sodium chloride coating significantly reduced virus replication, confirming the effectiveness of the method to prevent fomite contamination with SARS-CoV-2. In addition, the lung epithelia bioassay proved to be suitable for future evaluation of novel antiviral coatings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。