Tumor-derived GLI1 promotes remodeling of the immune tumor microenvironment in melanoma

肿瘤衍生的 GLI1 促进黑色素瘤免疫肿瘤微环境的重塑

阅读:8
作者:Alessandro Giammona #, Chiara De Vellis #, Enrica Crivaro #, Luisa Maresca, Roberta Amoriello, Federica Ricci, Giulia Anichini, Silvia Pietrobono, David R Pease, Martin E Fernandez-Zapico, Clara Ballerini, Barbara Stecca

Background

Melanoma progression is based on a close interaction between cancer cells and immune cells in the tumor microenvironment (TME). Thus, a better understanding of the mechanisms controlling TME dynamics and composition will help improve the management of this dismal disease. Work from our and other groups has reported the requirement of an active Hedgehog-GLI (HH-GLI) signaling for melanoma growth and stemness. However, the role of the downstream GLI1 transcription factor in melanoma TME remains largely unexplored.

Conclusion

Our findings highlight the relevance of tumor-derived GLI1 in promoting an immune-suppressive TME, which allows melanoma cells to evade the immune system, and pave the way for the design of new combination treatments targeting GLI1.

Methods

The immune-modulatory activity of GLI1 was evaluated in a syngeneic B16F10 melanoma mouse model assessing immune populations by flow cytometry. Murine polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were differentiated from bone marrow cells and their immunosuppressive ability was assessed by inhibition of T cells. Conditioned media (CM) from GLI1-overexpressing mouse melanoma cells was used to culture PMN-MDSCs, and the effects of CM were evaluated by Transwell invasion assay and T cell inhibition. Cytokine array analysis, qPCR and chromatin immunoprecipitation were performed to explore the regulation of CX3CL1 expression by GLI1. Human monocyte-derived dendritic cells (moDCs) were cultured in CM from GLI1-silenced patient-derived melanoma cells to assess their activation and recruitment. Blocking antibodies anti-CX3CL1, anti-CCL7 and anti-CXCL8 were used for in vitro functional assays.

Results

Melanoma cell-intrinsic activation of GLI1 promotes changes in the infiltration of immune cells, leading to accumulation of immunosuppressive PMN-MDSCs and regulatory T cells, and to decreased infiltration of dendric cells (DCs), CD8 + and CD4 + T cells in the TME. In addition, we show that ectopic expression of GLI1 in melanoma cells enables PMN-MDSC expansion and recruitment, and increases their ability to inhibit T cells. The chemokine CX3CL1, a direct transcriptional target of GLI1, contributes to PMN-MDSC expansion and recruitment. Finally, silencing of GLI1 in patient-derived melanoma cells promotes the activation of human monocyte-derived dendritic cells (moDCs), increasing cytoskeleton remodeling and invasion ability. This phenotype is partially prevented by blocking the chemokine CCL7, but not CXCL8.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。