Anti-Cancer Prodrug Cyclophosphamide Exerts Thrombogenic Effects on Human Venous Endothelial Cells Independent of CYP450 Activation-Relevance to Thrombosis

抗癌前药环磷酰胺对人类静脉内皮细胞产生血栓形成作用,与 CYP450 激活无关 - 与血栓形成相关

阅读:11
作者:Anne Krüger-Genge, Susanne Köhler, Markus Laube, Vanessa Haileka, Sandy Lemm, Karolina Majchrzak, Sarah Kammerer, Christian Schulz, Joachim Storsberg, Jens Pietzsch, Jan-Heiner Küpper, Friedrich Jung

Abstract

Cancer patients are at a very high risk of serious thrombotic events, often fatal. The causes discussed include the detachment of thrombogenic particles from tumor cells or the adverse effects of chemotherapeutic agents. Cytostatic agents can either act directly on their targets or, in the case of a prodrug approach, require metabolization for their action. Cyclophosphamide (CPA) is a widely used cytostatic drug that requires prodrug activation by cytochrome P450 enzymes (CYP) in the liver. We hypothesize that CPA could induce thrombosis in one of the following ways: (1) damage to endothelial cells (EC) after intra-endothelial metabolization; or (2) direct damage to EC without prior metabolization. In order to investigate this hypothesis, endothelial cells (HUVEC) were treated with CPA in clinically relevant concentrations for up to 8 days. HUVECs were chosen as a model representing the first place of action after intravenous CPA administration. No expression of CYP2B6, CYP3A4, CYP2C9 and CYP2C19 was found in HUVEC, but a weak expression of CYP2C18 was observed. CPA treatment of HUVEC induced DNA damage and a reduced formation of an EC monolayer and caused an increased release of prostacyclin (PGI2) and thromboxane (TXA) associated with a shift of the PGI2/TXA balance to a prothrombotic state. In an in vivo scenario, such processes would promote the risk of thrombus formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。