Neurotrophin-3 released from implant of tissue-engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury

组织工程丝素蛋白支架植入物释放的神经营养因子-3 可抑制炎症、增强神经纤维再生并改善犬脊髓损伤的运动功能

阅读:8
作者:Ge Li, Ming-Tian Che, Xiang Zeng, Xue-Cheng Qiu, Bo Feng, Bi-Qin Lai, Hui-Yong Shen, Eng-Ang Ling, Yuan-Shan Zeng

Abstract

Spinal cord injury (SCI) normally results in cell death, scarring, cavitation, inhibitory molecules release, etc., which are regarded as a huge obstacle to reconnect the injured neuronal circuits because of the lack of effective stimulus. In this study, a functional gelatin sponge scaffold was used to inhibit local inflammation, enhance nerve fiber regeneration, and improve neural conduction in the canine. This scaffold had good porosity and modified with neurotrophin-3 (NT-3)/fibroin complex, which showed sustained release in vitro. After the scaffold was transplanted into canine spinal cord hemisection model, hindlimb movement, and neural conduction were improved evidently. Migrating host cells, newly formed neurons with associated synaptic structures together with functional blood vessels with intact endothelium in the regenerating tissue were identified. Taken together, the results demonstrated that using bioactive scaffold could establish effective microenvironment stimuli for endogenous regeneration, providing a potential and practical strategy for treatment of spinal cord injury. © 2018 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2158-2170, 2018.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。