Fimepinostat, a novel dual inhibitor of HDAC and PI3K, effectively reverses HIV-1 latency ex vivo without T cell activation

Fimepinostat 是一种新型的 HDAC 和 PI3K 双重抑制剂,可在体外有效逆转 HIV-1 潜伏期,无需激活 T 细胞

阅读:7
作者:Jesper D Gunst, Kathrine Kjær, Rikke Olesen, Thomas A Rasmussen, Lars Østergaard, Paul W Denton, Ole S Søgaard, Martin Tolstrup

Conclusions

At therapeutic concentration, the dual HDAC and PI3K inhibitor fimepinostat was a potent HIV-1 latency-reversing agent and it did not induce T cell activation and proliferation. The potential of fimepinostat as a latency-reversing agent warrants further investigation.

Methods

Latently HIV-1-infected J-lat Tat-GFP and ACH-2 cell lines were stimulated with clinically relevant concentrations of fimepinostat using the HDAC inhibitors (HDACi) panobinostat and romidepsin for comparison. Next, CD4+ T cells from donors living with HIV-1 on long-term cART were stimulated ex vivo and cell-associated unspliced HIV-1 RNA was measured to quantify changes in HIV-1 transcription. Finally, the impact of fimepinostat on T cell activation (CD69 expression) and proliferation (Ki67 expression) was determined using peripheral blood mononuclear cells from uninfected donors.

Results

We found fimepinostat to be a potent latency-reversing agent. This was true in two latently infected cell lines as well as ex vivo in CD4+ T cells isolated from donors living with HIV-1. Relative to therapeutic dosing levels, fimepinostat showed latency-reversing potential comparable to romidepsin, which is the most potent HDACi tested in HIV-1 cure-related trials. Interestingly, in contrast to romidepsin, fimepinostat stimulation resulted in decreased T cell activation and had no negative impact on T cell proliferation. Conclusions: At therapeutic concentration, the dual HDAC and PI3K inhibitor fimepinostat was a potent HIV-1 latency-reversing agent and it did not induce T cell activation and proliferation. The potential of fimepinostat as a latency-reversing agent warrants further investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。