Real-time spatiotemporal characterization of mechanics and sonoporation of acoustic droplet vaporization in acoustically responsive scaffolds

声学响应支架中声滴汽化的力学和声孔效应的实时时空表征

阅读:9
作者:Mitra Aliabouzar, Bachir A Abeid, Oliver D Kripfgans, J Brian Fowlkes, Jonathan B Estrada, Mario L Fabiilli

Abstract

Phase-shift droplets provide a flexible and dynamic platform for therapeutic and diagnostic applications of ultrasound. The spatiotemporal response of phase-shift droplets to focused ultrasound, via the mechanism termed acoustic droplet vaporization (ADV), can generate a range of bioeffects. Although ADV has been used widely in theranostic applications, ADV-induced bioeffects are understudied. Here, we integrated ultra-high-speed microscopy, confocal microscopy, and focused ultrasound for real-time visualization of ADV-induced mechanics and sonoporation in fibrin-based, tissue-mimicking hydrogels. Three monodispersed phase-shift droplets-containing perfluoropentane (PFP), perfluorohexane (PFH), or perfluorooctane (PFO)-with an average radius of ∼6 μm were studied. Fibroblasts and tracer particles, co-encapsulated within the hydrogel, were used to quantify sonoporation and mechanics resulting from ADV, respectively. The maximum radial expansion, expansion velocity, induced strain, and displacement of tracer particles were significantly higher in fibrin gels containing PFP droplets compared to PFH or PFO. Additionally, cell membrane permeabilization significantly depended on the distance between the droplet and cell (d), decreasing rapidly with increasing d. Significant membrane permeabilization occurred when d was smaller than the maximum radius of expansion. Both ultra-high-speed and confocal images indicate a hyper-local region of influence by an ADV bubble, which correlated inversely with the bulk boiling point of the phase-shift droplets. The findings provide insight into developing optimal approaches for therapeutic applications of ADV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。