DNA barcoding of terrestrial invasive plant species in Southwest Michigan

密歇根州西南部陆生入侵植物物种的 DNA 条形码

阅读:8
作者:Sneha Nath, Joshua T VanSlambrouck, Janelle W Yao, Ashika Gullapalli, Fayyaz Razi, Yan Lu

Abstract

Because of the detrimental effects of terrestrial invasive plant species (TIPS) on native species, ecosystems, public health, and the economy, many countries have been actively looking for strategies to prevent the introduction and minimize the spread of TIPS. Fast and accurate detection of TIPS is essential to achieving these goals. Conventionally, invasive species monitoring has relied on morphological attributes. Recently, DNA-based species identification (i.e., DNA barcoding) has become more attractive. To investigate whether DNA barcoding can aid in the detection and management of TIPS, we visited multiple nature areas in Southwest Michigan and collected a small piece of leaf tissue from 91 representative terrestrial plant species, most of which are invasive. We extracted DNA from the leaf samples, amplified four genomic loci (ITS, rbcL, matK, and trnH-psbA) with PCR, and then purified and sequenced the PCR products. After careful examination of the sequencing data, we were able to identify reliable DNA barcode regions for most species and had an average PCR-and-sequencing success rate of 87.9%. We found that the species discrimination rate of a DNA barcode region is inversely related to the ease of PCR amplification and sequencing. Compared with rbcL and matK, ITS and trnH-psbA have better species discrimination rates (80.6% and 63.2%, respectively). When ITS and trnH-psbA are simultaneously used, the species discrimination rate increases to 97.1%. The high species/genus/family discrimination rates of DNA barcoding indicate that DNA barcoding can be successfully employed in TIPS identification. Further increases in the number of DNA barcode regions show little or no additional increases in the species discrimination rate, suggesting that dual-barcode approaches (e.g., ITS + trnH-psbA) might be the efficient and cost-effective method in DNA-based TIPS identification. Close inspection of nucleotide sequences at the four DNA barcode regions among related species demonstrates that DNA barcoding is especially useful in identifying TIPS that are morphologically similar to other species.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。