Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma

肿瘤微泡激活的成纤维细胞糖代谢重编程促进口腔鳞状细胞癌的进展

阅读:4
作者:Erhui Jiang, Zhi Xu, Meng Wang, Tinglin Yan, Chunming Huang, Xiaocheng Zhou, Qing Liu, Lin Wang, Yang Chen, Hui Wang, Ke Liu, Zhe Shao, Zhengjun Shang

Abstract

Metabolic reprogramming is a hallmark of cancer. Stromal cells could function as providers of energy metabolites for tumor cells by undergoing the "reverse Warburg effect," but the mechanism has not been fully elucidated. The interaction between the tumoral microvesicles (TMVs) and stroma in the tumor microenvironment plays a critical role in facilitating cancer progression. In this study, we demonstrated a novel mechanism for the TMV-mediated glycometabolic reprogramming of stromal cells. After being incubated with TMVs, normal human gingival fibroblasts exhibited a phenotype switch to cancer-associated fibroblasts and underwent a degradation of caveolin 1 (CAV1) through the ERK1/2-activation pathway. CAV1 degradation further induced the metabolic switch to aerobic glycolysis in the fibroblasts. The microvesicle-activated fibroblasts absorbed more glucose and produced more lactate. The migration and invasion of oral squamous cell carcinoma (OSCC) were promoted after being cocultured with the activated fibroblasts. Fibroblast-cancer cell glycometabolic coupling ring mediated by monocarboxylate transporter (MCT) 4 and MCT1 was then proved in the tumor microenvironment. Results indicated a mechanism for tumor progression by the crosstalk between tumor cells and stromal cells through the reverse Warburg effect via TMVs, thereby identifying potential targets for OSCC prevention and treatment.-Jiang, E., Xu, Z., Wang, M., Yan, T., Huang, C., Zhou, X., Liu, Q., Wang, L., Chen, Y., Wang, H., Liu, K., Shao, Z., Shang, Z. Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。