Single-cell and bulk tissue sequencing unravels the heterogeneity of synovial microenvironment in arthrofibrosis

单细胞和大量组织测序揭示关节纤维化中滑膜微环境的异质性

阅读:3
作者:Xi Chen, Lihua Gong, Cheng Li, Siyuan Wang, Ziyuan Wang, Ming Chu, Yixin Zhou

Abstract

Arthrofibrosis (AF) is a debilitating complication that occurs after trauma or surgery, leading to functional impairment and surgical failures worldwide. This study aimed to uncover the underlying mechanism of AF. A total of 141 patients were enrolled, and synovial samples were collected from both patients and animal models at different time points. Single-cell RNA-sequencing (scRNA-seq) and bulk tissue RNA sequencing (bulk-seq) were employed to profile the distinct synovial microenvironment. This study revealed changes in cell proportions during AF pathogenesis and identified Engrailed-1 (EN1) as a key transcription factor strongly associated with disease severity and clinical prognosis. Additionally, the researchers discovered a specific type of synovial fibroblast called DKK3-SLF, which played a critical role in driving AF development. These findings shed light on the composition and heterogeneity of the synovial microenvironment in AF, offering potential avenues for identifying therapeutic targets and developing clinical treatments for AF and other fibrotic diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。