Aqueous Persistent Noncovalent Ion-Pair Cooperative Coupling in a Ruthenium Cobaltabis(dicarbollide) System as a Highly Efficient Photoredox Oxidation Catalyst

钌钴双(二碳)体系中的水相持久非共价离子对协同偶联作为高效光氧化催化剂

阅读:6
作者:Isabel Guerrero, Clara Viñas, Xavier Fontrodona, Isabel Romero, Francesc Teixidor

Abstract

An original cooperative photoredox catalytic system, [RuII(trpy)(bpy)(H2O)][3,3'-Co(1,2-C2B9H11)2]2 (C4; trpy = terpyridine and bpy = bipyridine), has been synthesized. In this system, the photoredox metallacarborane catalyst [3,3'-Co(1,2-C2B9H11)2]- ([1]-) and the oxidation catalyst [RuII(trpy)(bpy)(H2O)]2+ (C2') are linked by noncovalent interactions and not through covalent bonds. The noncovalent interactions to a large degree persist even after water dissolution. This represents a step ahead in cooperativity avoiding costly covalent bonding. Recrystallization of C4 in acetonitrile leads to the substitution of water by the acetonitrile ligand and the formation of complex [RuII(trpy)(bpy)(CH3CN)][3,3'-Co(1,2-C2B9H11)2]2 (C5), structurally characterized. A significant electronic coupling between C2' and [1]- was first sensed in electrochemical studies in water. The CoIV/III redox couple in water differed by 170 mV when [1]- had Na+ as a cation versus when the ruthenium complex was the cation. This cooperative system leads to an efficient catalyst for the photooxidation of alcohols in water, through a proton-coupled electron-transfer process. We have highlighted the capacity of C4 to perform as an excellent cooperative photoredox catalyst in the photooxidation of alcohols in water at room temperature under UV irradiation, using 0.005 mol % catalyst. A high turnover number (TON = 20000) has been observed. The hybrid system C4 displays a better catalytic performance than the separated mixtures of C2' and Na[1], with the same concentrations and ratios of Ru/Co, proving the history relevance of the photocatalyst. Cooperative systems with this type of interaction have not been described and represent a step forward in getting cooperativity avoiding costly covalent bonding. A possible mechanism has been proposed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。