Hydrothermal synthesis and characterization of transition metal (Mn/Fe/Cu) co-doped cerium oxide-based nano-additives for potential use in the reduction of exhaust emission from spark ignition engines

过渡金属(Mn/Fe/Cu)共掺杂氧化铈基纳米添加剂的水热合成与表征,可用于减少火花点火发动机的废气排放

阅读:6
作者:Nazish Qadeer, Naila Jabeen, Latif U Khan, Manzar Sohail, Muhammad Zaheer, Muhammad Vaqas, Afia Kanwal, Fatima Sajid, Samina Qamar, Zareen Akhter

Abstract

The goal of this work was to synthesize new cerium oxide-based nano-additives to minimise emissions from spark ignition (SI) engines fueled with gasoline blends, such as carbon monoxide (CO), unburned hydrocarbons (HC) and oxides of nitrogen (NO x ). To investigate the effect of transition metal dopants on their respective catalytic oxidation activity, nano-sized CeO2 catalysts co-doped with Mn, Fe, Cu and Ag ions were successfully produced by a simple hydrothermal technique. The synthesis of nano-catalysts with cubic fluorite geometry was confirmed by XRD data. The addition of transition metal ions to the CeO2 lattice increased the concentration of structural defects like oxygen vacancies and Ce3+ ions, which are advantageous for the catalytic oxidation reaction, as also supported by XAFS and RAMAN analysis. Further, nano-gasoline fuel emission parameters are measured and compared to straight gasoline fuel. The results demonstrated that harmful exhaust pollutants such as CO, HC and NO x were significantly reduced. The high surface area, better redox characteristics and presence of additional oxygen vacancy sites or Ce3+ ions have been linked to the improved catalytic performance of the synthesized catalyst.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。