Hyperphosphataemia sensitizes renally impaired rats to the profibrotic effects of gadodiamide

高磷血症使肾功能不全大鼠对钆双胺的促纤维化作用敏感

阅读:7
作者:N Fretellier, Jm Idée, P Bruneval, S Guerret, F Daubiné, G Jestin, C Factor, N Poveda, A Dencausse, F Massicot, O Laprévote, C Mandet, N Bouzian, M Port, C Corot

Background and purpose

Hyperphosphataemia is common in patients with nephrogenic systemic fibrosis (NSF). NSF has been linked to administration of gadolinium (Gd) chelates (GCs) and elevated serum phosphate levels accelerate the release of Gd from linear, non-ionic GCs but not macrocyclic GCs. Hence, we determined whether hyperphosphataemia is a cofactor or risk factor for NSF by investigating the role of hyperphosphataemia in renally impaired rats. Experimental approach: Firstly, the clinical, pathological and bioanalytical consequences of hyperphosphataemia were investigated in subtotal nephrectomized (SNx) Wistar rats following i.v. administration of the non-ionic, linear GC gadodiamide (5 × 2.5 mmol·kg(-1) ·day(-1) ). Secondly, the effects of several GCs were compared in these high-phosphate diet fed rats. Total Gd concentration in skin, femur and plasma was measured by inductively coupled plasma mass spectrometry (ICP-MS) and free Gd(3+) in plasma by liquid chromatography coupled to ICP-MS. Relaxometry was used to measure dissociated Gd in skin and bone. Key

Purpose

Hyperphosphataemia is common in patients with nephrogenic systemic fibrosis (NSF). NSF has been linked to administration of gadolinium (Gd) chelates (GCs) and elevated serum phosphate levels accelerate the release of Gd from linear, non-ionic GCs but not macrocyclic GCs. Hence, we determined whether hyperphosphataemia is a cofactor or risk factor for NSF by investigating the role of hyperphosphataemia in renally impaired rats. Experimental approach: Firstly, the clinical, pathological and bioanalytical consequences of hyperphosphataemia were investigated in subtotal nephrectomized (SNx) Wistar rats following i.v. administration of the non-ionic, linear GC gadodiamide (5 × 2.5 mmol·kg(-1) ·day(-1) ). Secondly, the effects of several GCs were compared in these high-phosphate diet fed rats. Total Gd concentration in skin, femur and plasma was measured by inductively coupled plasma mass spectrometry (ICP-MS) and free Gd(3+) in plasma by liquid chromatography coupled to ICP-MS. Relaxometry was used to measure dissociated Gd in skin and bone. Key

Results

Four out of seven SNx rats fed a high-phosphate diet administered gadodiamide developed macroscopic and microscopic (fibrotic and inflammatory) skin lesions, whereas no skin lesions were observed in SNx rats treated with saline, the other GCs and free ligands or in the normal diet, gadodiamide-treated group. Unlike the other molecules, gadodiamide gradually increased the r(1) relaxivity value, consistent with its in vivo dissociation and release of soluble Gd. Conclusions and implications: Hyperphosphataemia sensitizes renally impaired rats to the profibrotic effects of gadodiamide. Unlike the other GCs investigated, gadodiamide gradually dissociates in vivo. Our data confirm that hyperphosphataemia is a risk factor for NSF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。