Physical and functional interaction between CB1 cannabinoid receptors and beta2-adrenoceptors

CB1 大麻素受体与 β2-肾上腺素能受体之间的物理和功能相互作用

阅读:6
作者:Brian D Hudson, Terence E Hébert, Melanie E M Kelly

Background and purpose

The CB(1) cannabinoid receptor and the beta(2)-adrenoceptor are G protein-coupled receptors (GPCRs) co-expressed in many tissues. The present study examined physical and functional interactions between these receptors in a heterologous expression system and in primary human ocular cells. Experimental approach: Physical interactions between CB(1) receptors and beta(2)-adrenoceptors were assessed using bioluminescence resonance energy transfer (BRET). Functional interactions between these receptors were evaluated by examining receptor trafficking, as well as extracellular signal-regulated kinase (ERK) and cyclic AMP response element binding protein (CREB) signalling. Key

Purpose

The CB(1) cannabinoid receptor and the beta(2)-adrenoceptor are G protein-coupled receptors (GPCRs) co-expressed in many tissues. The present study examined physical and functional interactions between these receptors in a heterologous expression system and in primary human ocular cells. Experimental approach: Physical interactions between CB(1) receptors and beta(2)-adrenoceptors were assessed using bioluminescence resonance energy transfer (BRET). Functional interactions between these receptors were evaluated by examining receptor trafficking, as well as extracellular signal-regulated kinase (ERK) and cyclic AMP response element binding protein (CREB) signalling. Key

Results

Physical interactions between CB(1) receptors and beta(2)-adrenoceptors were demonstrated using BRET. In human embryonic kidney (HEK) 293H cells, co-expression of beta(2)-adrenoceptors tempered the constitutive activity and increased cell surface expression of CB(1) receptors. Co-expression altered the signalling properties of CB(1 )receptors, resulting in increased Galpha(i)-dependent ERK phosphorylation, but decreased non-Galpha(i)-mediated CREB phosphorylation. The CB(1) receptor inverse agonist AM251 (N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) attenuated beta(2)-adrenoceptor-pERK signalling in cells expressing both receptors, while the CB(1) receptor neutral antagonist O-2050 ((6aR,10aR)-3-(1-methanesulfonylamino-4-hexyn-6-yl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran) did not. The actions of AM251 and O-2050 were further examined in primary human trabecular meshwork (HTM) cells, which are ocular cells endogenously co-expressing CB(1) receptors and beta(2)-adrenoceptors. In HTM cells, as in HEK 293H cells, AM251 but not O-2050, altered the beta(2)-adrenoceptor-pERK response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。