Metabolic profiles of Sri Lankan cassava mosaic virus-infected and healthy cassava (Manihot esculenta Crantz) cultivars with tolerance and susceptibility phenotypes

具有耐受性和易感性表型的斯里兰卡木薯花叶病毒感染和健康木薯(Manihot esculenta Crantz)品种的代谢概况

阅读:5
作者:Somruthai Chaowongdee, Srihunsa Malichan, Pornkanok Pongpamorn, Atchara Paemanee, Wanwisa Siriwan

Background

Cassava mosaic disease (CMD) of cassava (Manihot esculenta Crantz) has expanded across many continents. Sri Lankan cassava mosaic virus (SLCMV; family Geminiviridae), which is the predominant cause of CMD in Thailand, has caused agricultural and economic damage in many Southeast Asia countries such as Vietnam, Loas, and Cambodia. The recent SLCMV epidemic in Thailand was commonly found in cassava plantations. Current understanding of plant-virus interactions for SLCMV and cassava is limited. Accordingly, this study explored the metabolic profiles of SLCMV-infected and healthy groups of tolerant (TME3 and KU50) and susceptible (R11) cultivars of cassava. Findings from the study may help to improve cassava breeding, particularly when combined with future transcriptomic and proteomic research.

Conclusions

Metabolic profiling of three cassava landrace cultivars (TME3, KU50, and R11) was performed after SLCMV infection and the profiles were compared with those of healthy samples. Certain differential compounds (SLCMV-infected vs healthy groups) in different cultivars of cassava may be involved in plant-virus interactions and could underlie the tolerance and susceptible responses in this important crop.

Results

SLCMV-infected and healthy leaves were subjected to metabolite extraction followed by ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS/MS). The resulting data were analyzed using Compound Discoverer software, the mzCloud, mzVault, and ChemSpider databases, and published literature. Of the 85 differential compounds (SLCMV-infected vs healthy groups), 54 were differential compounds in all three cultivars. These compounds were analyzed using principal component analysis (PCA), hierarchical clustering dendrogram analysis, heatmap analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. Chlorogenic acid, DL-carnitine, neochlorogenic acid, (E)-aconitic acid, and ascorbyl glucoside were differentially expressed only in TME3 and KU50, with chlorogenic acid, (E)-aconitic acid, and neochlorogenic acid being downregulated in both SLCMV-infected TME3 and KU50, DL-carnitine being upregulated in both SLCMV-infected TME3 and KU50, and ascorbyl glucoside being downregulated in SLCMV-infected TME3 but upregulated in SLCMV-infected KU50. Furthermore, 7-hydroxycoumarine was differentially expressed only in TME3 and R11, while quercitrin, guanine, N-acetylornithine, uridine, vorinostat, sucrose, and lotaustralin were differentially expressed only in KU50 and R11. Conclusions: Metabolic profiling of three cassava landrace cultivars (TME3, KU50, and R11) was performed after SLCMV infection and the profiles were compared with those of healthy samples. Certain differential compounds (SLCMV-infected vs healthy groups) in different cultivars of cassava may be involved in plant-virus interactions and could underlie the tolerance and susceptible responses in this important crop.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。