Mechanism and molecular basis for the sodium channel subtype specificity of µ-conopeptide CnIIIC

µ-芋螺肽 CnIIIC 钠通道亚型特异性的机制和分子基础

阅读:7
作者:René Markgraf, Enrico Leipold, Jana Schirmeyer, Marianne Paolini-Bertrand, Oliver Hartley, Stefan H Heinemann

Background and purpose

Voltage-gated sodium channels (Na(V) channels) are key players in the generation and propagation of action potentials, and selective blockade of these channels is a promising strategy for clinically useful suppression of electrical activity. The conotoxin µ-CnIIIC from the cone snail Conus consors exhibits myorelaxing activity in rodents through specific blockade of skeletal muscle (Na(V) 1.4) Na(V) channels. Experimental approach: We investigated the activity of µ-CnIIIC on human Na(V) channels and characterized its inhibitory mechanism, as well as the molecular basis, for its channel specificity. Key

Purpose

Voltage-gated sodium channels (Na(V) channels) are key players in the generation and propagation of action potentials, and selective blockade of these channels is a promising strategy for clinically useful suppression of electrical activity. The conotoxin µ-CnIIIC from the cone snail Conus consors exhibits myorelaxing activity in rodents through specific blockade of skeletal muscle (Na(V) 1.4) Na(V) channels. Experimental approach: We investigated the activity of µ-CnIIIC on human Na(V) channels and characterized its inhibitory mechanism, as well as the molecular basis, for its channel specificity. Key

Results

Similar to rat paralogs, human Na(V) 1.4 and Na(V) 1.2 were potently blocked by µ-CnIIIC, the sensitivity of Na(V) 1.7 was intermediate, and Na(V) 1.5 and Na(V) 1.8 were insensitive. Half-channel chimeras revealed that determinants for the insensitivity of Na(V) 1.8 must reside in both the first and second halves of the channel, while those for Na(V) 1.5 are restricted to domains I and II. Furthermore, domain I pore loop affected the total block and therefore harbours the major determinants for the subtype specificity. Domain II pore loop only affected the kinetics of toxin binding and dissociation. Blockade by µ-CnIIIC of Na(V) 1.4 was virtually irreversible but left a residual current of about 5%, reflecting a 'leaky' block; therefore, Na(+) ions still passed through µ-CnIIIC-occupied Na(V) 1.4 to some extent. TTX was excluded from this binding site but was trapped inside the pore by µ-CnIIIC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。