The Hexosamine Biosynthetic Pathway alters the cytoskeleton to modulate cell proliferation and migration in metastatic prostate cancer

己糖胺生物合成途径改变细胞骨架,调节转移性前列腺癌的细胞增殖和迁移

阅读:11
作者:Rajina Shakya, Praveen Suraneni, Alexander Zaslavsky, Amit Rahi, Christine B Magdongon, Raju Gajjela, Basil B Mattamana, Dileep Varma

Abstract

Castration-resistant prostate cancer (CRPC) progresses despite androgen deprivation therapy, as cancer cells adapt to grow without testosterone, becoming more aggressive and prone to metastasis. CRPC biology complicates the development of effective therapies, posing challenges for patient care. Recent gene-expression and metabolomics studies highlight the Hexosamine Biosynthetic Pathway (HBP) as a critical player, with key components like GNPNAT1 and UAP1 being downregulated in metastatic CRPC. GNPNAT1 knockdown has been shown to increase cell proliferation and metastasis in CRPC cell lines, though the mechanisms remain unclear. To investigate the cellular basis of these CRPC phenotypes, we generated a CRISPR-Cas9 knockout model of GNPNAT1 in 22Rv1 CRPC cells, analyzing its impact on metabolomic, glycoproteomic, and transcriptomic profiles of cells. We hypothesize that HBP inhibition disrupts the cytoskeleton, altering mitotic progression and promoting uncontrolled growth. GNPNAT1 KO cells showed reduced levels of cytoskeletal filaments, such as actin and microtubules, leading to cell structure disorganization and chromosomal mis-segregation. GNPNAT1 inhibition also activated PI3K/AKT signaling, promoting proliferation, and impaired cell adhesion by mislocalizing EphB6, enhancing migration via the RhoA pathway and promoting epithelial-to-mesenchymal transition. These findings suggest that HBP plays a critical role in regulating CRPC cell behavior, and targeting this pathway could provide a novel therapeutic approach.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。