Unveiling of a smartphone-mediated ratiometric chemosensor towards the nanomolar level detection of lethal CN-: combined experimental and theoretical validation with the proposition of a molecular logic circuitry

揭开智能手机介导的比率化学传感器的面纱,用于检测致命的 CN- 的纳摩尔水平:结合实验和理论验证以及分子逻辑电路的提议

阅读:8
作者:Suparna Paul, Udayan Mondal, Somrita Nag, Madhupa Seth, Priyabrata Banerjee

Abstract

A promising naphthalene-functionalized ratiometric chemosensor (E)-1-((naphthalen-5-yl) methylene)-2-(2,4-dinitrophenyl) hydrazine (DNMH) is unveiled in the present work. DNMH demonstrates brisk discernible colorimetric response from yellow to red in the presence of CN-, a lethal environmental contaminant, in a near-perfect aqueous medium with a LOD of 278 nM. The "key role marker" controlling the electrochemical and non-covalent H-bonding interaction between DNMH and CN- is through the commendable role of acidic -NH functionalities. Kinetic studies reveal a pseudo second order reaction rate and the formation of an unprecedented photostable adduct. The negative value of ΔG as evaluated from ITC substantiates the spontaneity of the DNMH⋯CN- interaction. The sensing mechanism was further reinforced with state-of-the-art theoretical investigations, namely DFT, TDDFT and Fukui indices (FIs). Moreover, the proposition of a reversible multi-component logic circuitry implementing Boolean functions in molecular electronics has also been triggered by the turn-over spectrophotometric response of the ditopic ions CN- and Cd2+. The cytotoxicity of DNMH towards Bacillus thuringiensis and Escherichia coli is successfully investigated via the MTT assay. Impressively, "dip stick" and "easy to prepare" test paper device and silica gel-based solid-phase CN- recognition validate the on-site analytical application of DNMH. Furthermore, the involvement of a synergistic approach between 'chemistry beyond the molecule' and 'engineering' via an exquisitely implemented smartphone-assisted colorimetric sensory prototype makes this work unprecedented among its congeners and introduces a new frontier in multitudinous material-based functional product development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。