The inhibitors of cyclin-dependent kinases and GSK-3β enhance osteoclastogenesis

细胞周期蛋白依赖性激酶和 GSK-3β 抑制剂可增强破骨细胞生成

阅读:4
作者:Yosuke Akiba, Akiko Mizuta, Yoshito Kakihara, Juri Nakata, Jun Nihara, Isao Saito, Hiroshi Egusa, Makio Saeki

Abstract

Osteoclasts are multinucleated cells with bone resorption activity that is crucial for bone remodeling. RANK-RANKL (receptor activator of nuclear factor κB ligand) signaling has been shown as a main signal pathway for osteoclast differentiation. However, the molecular mechanism and the factors regulating osteoclastogenesis remain to be fully understood. In this study, we performed a chemical genetic screen, and identified a Cdks/GSK-3β (cyclin-dependent kinases/glycogen synthase kinase 3β) inhibitor, kenpaullone, and two Cdks inhibitors, olomoucine and roscovitine, all of which significantly enhance osteoclastogenesis of RAW264.7 cells by upregulating NFATc1 (nuclear factor of activated T cells, cytoplasmic 1) levels. We also determined that the all three compounds increase the number of osteoclast differentiated from murine bone marrow cells. Furthermore, the three inhibitors, especially kenpaullone, promoted maturation of cathepsin K, suggesting that the resorption activity of the resultant osteoclasts is also activated. Our findings indicate that inhibition of GSK-3β and/or Cdks enhance osteoclastogenesis by modulating the RANK-RANKL signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。