Ocean circulation contributes to genetic connectivity of limpet populations at deep-sea hydrothermal vents in a back-arc basin

海洋环流促进弧后盆地深海热液喷口帽贝种群的遗传连通性

阅读:10
作者:Yuichi Nakajima, Masako Nakamura, Hiromi Kayama Watanabe, Jun-Ichiro Ishibashi, Hiroyuki Yamamoto, Satoshi Mitarai

Abstract

For endemic benthos inhabiting hydrothermal vent fields, larval recruitment is critical for population maintenance and colonization via migration among separated sites. The vent-endemic limpet, Lepetodrilus nux, is abundant at deep-sea hydrothermal vents in the Okinawa Trough, a back-arc basin in the northwestern Pacific; nonetheless, it is endangered due to deep-sea mining. This species is associated with many other vent species and is an important successor in these vent ecosystems. However, limpet genetic diversity and connectivity among local populations have not yet been examined. We conducted a population genetics study of L. nux at five hydrothermal vent fields (maximum geographic distance, ~545 km; depths ~700 m to ~1650 m) using 14 polymorphic microsatellite loci previously developed. Genetic diversity has been maintained among these populations. Meanwhile, fine population genetic structure was detected between distant populations, even within this back-arc basin, reflecting geographic distances between vent fields. There was a significant, positive correlation between genetic differentiation and geographic distance, but no correlation with depth. Contrary to dispersal patterns predicted by an ocean circulation model, genetic migration is not necessarily unidirectional, based on relative migration rates. While ocean circulation contributes to dispersal of L. nux among vent fields in the Okinawa Trough, genetic connectivity may be maintained by complex, bidirectional dispersal processes over multiple generations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。