Tannic Acid-mediated Multifunctional 3D Printed Composite Hydrogel for Osteochondral Regeneration

单宁酸介导的多功能3D打印复合水凝胶用于骨软骨再生

阅读:5
作者:Lanlan Dong, Zhengzhe Han, Xiang Li

Abstract

Hydrogels have become an attractive option for tissue repair. A novel multifunctional hydrogel was developed using a two-step method involving photopolymerization and tannic acid (TA) solution incubation. The mechanical properties of this hydrogel were enhanced by the multi-hydrogen bond interaction between the TA and N-acryloyl glycinamide/gelatin methacrylate (NAGA/GelMA). The compressive modulus was doubled. The compressive strengths of the hydrogel were 5.5 MPa. The swelling rate was reduced by a factor of three. The adhesion strength of the composite hydrogel reached 80 KPa. The TA-mediated NAGA/GelMA/Laponite composite hydrogel exhibited excellent anti-fatigue and anti-oxidation properties, as well as printability. In vitro experiments indicated that the TA-mediated hydrogel facilitated the proliferation of bone marrow mesenchymal stem cells and osteogenic and chondrogenic differentiation. The developed multifunctional composite hydrogel has great potential for osteochondral defect repair under osteoarthritis conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。