Neuronal fatty acid-binding protein enhances autophagy and suppresses amyloid-β pathology in a Drosophila model of Alzheimer's disease

神经元脂肪酸结合蛋白增强自噬并抑制阿尔茨海默病果蝇模型中的淀粉样β蛋白病理

阅读:5
作者:Seokhui Jang, Byoungyun Choi, Chaejin Lim, Minkyoung Kim, Ji-Eun Lee, Hyungi Lee, Eunji Baek, Kyoung Sang Cho

Abstract

Fatty acid-binding proteins (FABPs) are small cytoplasmic proteins involved in intracellular lipid transport and bind free fatty acids, cholesterol, and retinoids. FABP3, the major neuronal FABP in the adult brain, is upregulated in the CSF of patients with Alzheimer's disease (AD). However, the precise role of neuronal FABPs in AD pathogenesis remains unclear. This study investigates the contribution of fabp, the Drosophila homolog of FABP3 and FABP7, to amyloid β (Aβ) pathology using a Drosophila model. Neuronal knockdown of fabp shortened the lifespan of flies and increased age-related protein aggregates in the brain. In an AD model, fabp knockdown in neurons increased Aβ accumulation and Aβ-induced neurodegeneration, whereas fabp overexpression ameliorated Aβ pathology. Notably, fabp overexpression stimulated autophagy, which was inhibited by the knockdown of Eip75B, the Drosophila homolog of the peroxisome proliferator-activated receptor (PPAR). The PPAR activator rosiglitazone restored autophagy impaired by fabp knockdown and reduced fabp knockdown-induced increased Aβ aggregation and cell death. Furthermore, knockdown of either fabp or Eip75B in the wing imaginal disc or adult fly brain reduced the expression of Atg6 and Atg8a. Additionally, treatment of the fabp knockdown AD model flies with polyunsaturated fatty acids, such as docosahexaenoic acid or linoleic acid, partially alleviated cell death in the developing eye, restored impaired autophagy flux, reduced Aβ aggregation, and attenuated Aβ-induced cell death. Our results suggest that Drosophila fabp plays an important role in maintaining protein homeostasis during aging and protects neurons from Aβ-induced cell death by enhancing autophagy through the PPAR pathway. These findings highlight the potential importance of neuronal FABP function in AD pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。