Investigation of neuro-regenerative therapeutic potential of nerve composite matrix hydrogels embedded with adipose-derived stem cells

脂肪干细胞嵌入神经复合基质水凝胶的神经再生治疗潜力研究

阅读:13
作者:Inha Baek, Younghye Song

Abstract

Traumatic spinal cord injury (SCI) induces permanent sensorimotor deficit below the site of injury. There is various research conducted to provide effective therapy, however, SCI is still considered incurable due to the complex nature of the injury site. Recently, our lab developed a combinatorial therapeutic for SCI repair comprising human adipose-derived stem cell (hASC)-embedded nerve composite hydrogels using different ratios of decellularized sciatic nerve (dSN) and spinal cord (dSC) matrices. This study investigated angiogenic and neurotrophic effects of the combinatorial therapeutic in vitro. Compression testing was performed to analyze mechanical properties of the composite hydrogels and showed no significant difference between all hydrogel groups. Next, pro-angiogenic factors and neurotrophins secreted from hASCs within different ratios of the composite hydrogels were analyzed and we found culture durations and extracellular matrix (ECM) composition affect secretory behavior. Interestingly, ECM compositional difference between hydrogel groups had little influence on human brain microvascular endothelial cells (HBVECs) infiltration and dorsal root ganglia (DRG) neurite outgrowth. Finally, we conducted proteomic analysis to identify the ECM components potentially contributing to these observed effects. Taken together, dSN:dSC = 1:2 hydrogel showed slightly better therapeutic potentials, warranting validation using in vivo studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。