Isoliquiritigenin Attenuates UUO-Induced Renal Inflammation and Fibrosis by Inhibiting Mincle/Syk/NF-Kappa B Signaling Pathway

异甘草素通过抑制 Mincle/Syk/NF-κB 信号通路减轻 UUO 诱发的肾脏炎症和纤维化

阅读:7
作者:Yuan Liao #, Rui-Zhi Tan #, Jian-Chun Li, Tong-Tong Liu, Xia Zhong, Ying Yan, Jie-Ke Yang, Xiao Lin, Jun-Ming Fan, Li Wang

Conclusion

To conclude, ISL protects UUO-induced CKD by inhibiting Mincle-induced inflammation and suppressing renal fibrosis, which might be a specific renal protective mechanism of ISL, making it a novel drug to ameliorate CKD.

Methods

In this study, we employed the inflammatory and fibrotic models of LPS/TGF-β-induced bone marrow-derived macrophages (BMDM) in vitro and unilateral ureteral obstruction (UUO) model in vivo to explore the potential effects and mechanism of ISL on renal inflammation and fibrosis.

Purpose

Chronic kidney disease (CKD) is a global nephrotic syndrome characterized by chronic inflammation, oxidative stress and fibrosis in the kidney. Isoliquiritigenin (ISL), a flavonoid from licorice, has historically been reported to inhibit innate immune responses to inflammation and fibrosis in vivo. However, the effect of ISL on CKD progression is largely unknown. Materials and

Results

Our results manifest that ISL improved UUO-induced renal dysfunction and reduced tubular damage with a significantly downregulated mRNA expression and secretion of IL-1β, IL-6, TNF-α and MCP-1 in vitro and in vivo. It is worth noting that ISL can strongly inhibit the mRNA and protein expression of Mincle (macrophage-induced c-type lectin) in BMDM and UUO. ISL inhibited the phosphorylation of Syk and NF-kappa B and simultaneously reduced the expression of α-SMA and Col III in vivo and in vitro. More interestingly, when dealing with TDB, a ligand of Mincle, it revealed significant reversal of protein expression levels as that observed with ISL. The expressions of IL-1β, IL-6, TNF-α, iNOS, p-Syk, p-NF-kappa B, α-SMA and FN in BMDM inflammatory model were significantly upregulated with TDB treatment. This confirms that ISL inhibits inflammation and fibrosis of macrophage by suppressing Mincle/Syk/NF-kappa B signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。