Defoliation-induced compensatory transpiration is compromised in SUT4-RNAi Populus

在 SUT4-RNAi 杨树中,落叶诱导的补偿蒸腾作用受到损害

阅读:5
作者:Scott A Harding, Christopher J Frost, Chung-Jui Tsai

Abstract

The tonoplast sucrose transporter PtaSUT4 is well expressed in leaves of Populus tremula × Populus alba (INRA 717-IB4), and its inhibition by RNA-interference (RNAi) alters leaf sucrose homeostasis. Whether sucrose partitioning between the vacuole and the cytosol is modulated by PtaSUT4 for specific physiological outcomes in Populus remains unexplored. In this study, partial defoliation was used to elicit compensatory increases in photosynthesis and transpiration by the remaining leaves in greenhouse-grown poplar. Water uptake, leaf gas exchange properties, growth and nonstructural carbohydrate abundance in source and sink organs were then compared between wild-type and SUT4-RNAi lines. Partial defoliation increased maximum photosynthesis rates similarly in all lines. There was no indication that source leaf sugar levels changed differently between wild-type and RNAi plants following partial defoliation. Sink levels of hexose (glucose and fructose) and starch decreased similarly in all lines. Interestingly, plant water uptake after partial defoliation was not as well sustained in RNAi as in wild-type plants. While the compensatory increase in photosynthesis was similar between genotypes, leaf transpiration increased less robustly in RNAi than wild-type plants. SUT4-RNAi and wild-type source leaves differed constitutively in their bulk modulus of elasticity, a measure of leaf turgor, and storage water capacitance. The data demonstrate that reduced sucrose partitioning due to PtaSUT4-RNAi altered turgor control and compensatory transpiration capacity more strikingly than photosynthesis and sugar export. The results are consistent with the interpretation that SUT4 may control vacuolar turgor independently of sink carbon provisioning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。