High maternal adiposity during pregnancy programs an imbalance in the lipidome and predisposes to diet-induced hepatosteatosis in the offspring

妊娠期间母亲肥胖程度高会导致脂质组失衡,并导致后代易患饮食引起的肝脂肪变性

阅读:4
作者:Taylor B Scheidl, Jessica L Wager, Larissa G Baker, Amy L Brightwell, Katrina M Melan, Sebastian Larion, Ousseynou Sarr, Timothy Rh Regnault, Stefan J Urbanski, Jennifer A Thompson

Background

Exposure to high maternal adiposity in utero is a significant risk factor for the later-life development of metabolic syndrome (MetS), including non-alcoholic fatty liver disease (NAFLD). We have previously shown that high pre-pregnancy adiposity programs adipose tissue dysfunction in the offspring, leading to spillover of fatty acids into the circulation, a key pathogenic event in obesity-associated MetS. Herein, we hypothesized that programming of adipose tissue dysfunction in offspring born to overweight dams increases the risk for developing NAFLD.

Conclusion

High maternal adiposity during pregnancy programs a susceptibility to diet-induced hepatosteatosis.

Results

Females heterozygous for leptin receptor deficiency (Hetdb) were used as a model of high pre-pregnancy adiposity. Female wild-type (Wt) offspring born to Hetdb pregnancies gained significantly more body fat following high-fat/fructose diet (HFFD) compared with Wt offspring born to Wt dams. HFFD increased circulating free fatty acids (FFA) in male offspring of control dams, while FFA levels were similar in HFFD-fed offspring from Wt dams and CD or HFFD-fed Wt offspring from Hetdb dams. Despite female-specific protection from diet-induced FFA spillover, both male and female offspring from Hetdb dams were more susceptible to diet-induced hepatosteatosis. Lipidomic analysis revealed that CD-offspring of overweight dams had decreased hepatic polyunsaturated FA (PUFA) levels compared with control offspring. Changes to saturated FA (SFA) and the de novo lipogenic (DNL) index were diet driven; however, there was a significant effect of the intrauterine environment on FA elongation and Δ9 desaturase activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。