A value-added application of eugenol as acaricidal agent: The mechanism of action and the safety evaluation

丁香酚作为杀螨剂的增值应用:作用机制及安全性评价

阅读:7
作者:Xiao-Fei Shang, Li-Xia Dai, Chen-Jie Yang, Xiao Guo, Ying-Qian Liu, Xiao-Lou Miao, Ji-Yu Zhang

Conclusion

This is the first report on acaricidal eugenol targeting complex I of the mitochondrial respiratory chain. This work lays the foundation for the development of eugenol as an environmentally alternative acaricidal agent.

Methods

Using RNA-Seq analysis, surface plasmon resonance analysis and RNA interference assay, the mode of action of eugenol against Psoroptes cuniculi was investigated. The effect on the mitochondrial membrane potential and complex I of PC12 cells and C6/36 cells was assayed to investigate the species specificity of eugenol in insects and mammals. Finally, a safety evaluation of eugenol in vivo was performed.

Results

Eugenol inhibited complex I activity of the mitochondrial respiratory chain in the oxidative phosphorylation pathway by binding to NADH dehydrogenase chain 2 and resulted in the death of mites. The inhibition rates were 37.89% for 50 μg/mL and 60.26% for 100 μg/mL, respectively. Further experiments indicated that the difference in the complex I sequence between insects and mammals led to the different affinity of eugenol to specific peptide, resulting in species specificity. Eugenol exhibited significant inhibitory effects against the mitochondrial membrane potential and complex I in Aedes albopictus C6/36 cells but was not active in rat PC12 cells. Insect cells were particularly sensitive to eugenol. In contrast to the known inhibitor rotenone, eugenol had better safety and did not result in Parkinson's disease or other diseases in rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。