Alpinumisoflavone Activates Disruption of Calcium Homeostasis, Mitochondria and Autophagosome to Suppress Development of Endometriosis

高山异黄酮激活钙稳态、线粒体和自噬体的破坏,从而抑制子宫内膜异位症的发展

阅读:5
作者:Jisoo Song, Jiyeon Ham, Sunwoo Park, Soo Jin Park, Hee Seung Kim, Gwonhwa Song, Whasun Lim

Abstract

Alpinumisoflavone is an isoflavonoid extracted from the Cudrania tricuspidate fruit and Genista pichisermolliana. It has various physiological functions, such as anti-inflammation, anti-proliferation, and apoptosis, in malignant tumors. However, the effect of alpinumisoflavone is still not known in chronic diseases and other benign reproductive diseases, such as endometriosis. In this study, we examined the cell death effects of alpinumisoflavone on the endometriosis cell lines, End1/E6E7 and VK2/E6E7. Results indicated that alpinumisoflavone inhibited cell migration and proliferation and led to cell cycle arrest, depolarization of mitochondria membrane potential, apoptosis, and disruption of calcium homeostasis in the endometriosis cell lines. However, the cellular proliferation of normal uterine epithelial cells was not changed by alpinumisoflavone. The alteration in Ca2+ levels was estimated in fluo-4 AM-stained End1/E6E7 and VK2/E6E7 cells after alpinumisoflavone treatment with or without calcium inhibitor, 2-aminoethoxydiphenyl borate (2-APB). The results indicated that a combination of alpinumisoflavone and a calcium inhibitor reduced the calcium accumulation in the cytosol of endometriosis cells. Additionally, alpinumisoflavone decreased oxidative phosphorylation (OXPHOS) in the endometriotic cells. Moreover, protein expression analysis revealed that alpinumisoflavone inactivated AKT signaling pathways, whereas it increased MAPK, ER stress, and autophagy regulatory proteins in End1/E6E7 and VK2/E6E7 cell lines. In summary, our results suggested that alpinumisoflavone could be a promising effective management agent or an adjuvant therapy for benign disease endometriosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。