ALDH1A3 Contributes to Radiation-Induced Inhibition of Self-Renewal and Promotes Proliferative Activity of p53-Deficient Glioblastoma Stem Cells at the Onset of Differentiation

ALDH1A3 有助于辐射诱导的自我更新抑制,并在分化开始时促进 p53 缺陷型胶质母细胞瘤干细胞的增殖活性

阅读:8
作者:Andreas Müller, Bogdan Lyubarskyy, Jurij Tchoumakov, Maike Wagner, Bettina Sprang, Florian Ringel, Ella L Kim

Abstract

ALDH1A3 is a marker for mesenchymal glioblastomas characterized by a greater degree of aggressiveness compared to other major subtypes. ADH1A3 has been implicated in the regulation of stemness and radioresistance mediated by glioblastoma stem cells. Mechanisms by which ALDH1A3 promotes malignant progression of glioblastoma remain elusive posing a challenge for rationalization of ALDH1A3 targeting in glioblastoma, and it is also unclear how ALDH1A3 regulates glioblastoma cells stemness. Usage of different models with diverse genetic backgrounds and often unknown degree of stemness is one possible reason for discrepant views on the role of ALDH1A3 in glioblastoma stem cells. This study clarifies ALDH1A3 impacts on glioblastoma stem cells by modelling ALDH1A3 expression in an otherwise invariable genetic background with consideration of the impacts of inherent plasticity and proliferative changes associated with transitions between cell states. Our main finding is that ALDH1A3 exerts cell-state dependent impact on proliferation of glioblastoma stem cells. We provide evidence that ALDH1A3 augments radiation-induced inhibition of self-renewal and promotes the proliferation of differentiated GSC progenies. Congruent effects ALDH1A3 and radiation on self-renewal and proliferation provides a framework for promoting glioblastoma growth under radiation treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。