A common phthalate replacement disrupts ovarian function in young adult mice

一种常见的邻苯二甲酸酯替代品会破坏年轻成年小鼠的卵巢功能

阅读:6
作者:Courtney Potts, Allison Harbolic, Maire Murphy, Michelle Jojy, Christine Hanna, Maira Nadeem, Hanin Alahmadi, Stephanie Martinez, Genoa R Warner

Abstract

Di-2-ethylhexyl terephthalate (DEHTP) is a replacement for its structural isomer di-2-ethylhexyl phthalate (DEHP), a known endocrine disrupting chemical and ovarian toxicant. DEHTP is used as a plasticizer in polyvinyl chloride products and its metabolites are increasingly found in biomonitoring studies at levels similar to phthalates. However, little is known about the effects of DEHTP on the ovary. In this research, we tested the hypothesis that DEHTP is an ovarian toxicant and likely endocrine disrupting chemical like its isomer DEHP. The impact of environmentally relevant exposure to DEHTP and/or its metabolite mono-2-ethylhexyl terephthalate (MEHTP) on the mouse ovary was investigated in vivo and in vitro. For the in vivo studies, young adult CD-1 mice were orally dosed with vehicle, 10 µg/kg, 100 µg/kg, or 100 mg/kg of DEHTP for 10 days. For the in vitro studies, isolated untreated ovarian follicles were exposed to vehicle, 0.1, 1, 10, or 100 µg/mL of DEHTP or MEHTP. Follicle counts, hormone levels, and gene expression of steroidogenic enzymes, cell cycle regulators, and apoptosis factors were analyzed. In vivo, DEHTP exposure increased primordial follicle counts at 100 µg/kg and 100 mg/kg and decreased primary follicle counts at 100 mg/kg compared to control. DEHTP exposure also decreased expression of cell cycle regulators and apoptotic factors compared to control. In vitro, follicle growth was reduced by 1 µg/mL DEHTP and 1, 10, and 100 µg/mL MEHTP compared to controls, and expression of the cell cycle regulator Cdkn2b was increased. Steroid hormone levels and steroidogenic enzyme gene expression trended toward decreases in vivo, whereas progesterone was significantly increased by exposure to 100 µg/mL MEHTP in vitro. Overall, these results suggest that DEHTP and MEHTP may be ovarian toxicants at low doses and should be subjected to further scrutiny for reproductive toxicity due to their similar structures to phthalates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。