Intracellular Localization Studies of the Luminescent Analogue of an Anticancer Ruthenium Iminophosphorane with High Efficacy in a Triple-Negative Breast Cancer Mouse Model

高效抗癌钌亚氨基膦发光类似物在三阴性乳腺癌小鼠模型中的细胞内定位研究

阅读:5
作者:Kirill Miachin, Virginia Del Solar, Elsy El Khoury, Nazia Nayeem, Anton Khrystenko, Patricia Appelt, Michelle C Neary, Daniela Buccella, Maria Contel

Abstract

The potential of ruthenium(II) compounds as an alternative to platinum-based clinical anticancer agents has been unveiled after extensive research for over 2 decades. As opposed to cisplatin, ruthenium(II) compounds have distinct mechanisms of action that do not rely solely on interactions with DNA. In a previous report from our group, we described the synthesis, characterization, and biological evaluation of a cationic, water-soluble, organometallic ruthenium(II) iminophosphorane (IM) complex of p-cymene, ([(η6-p-cymene)Ru{(Ph3P═N-CO-2N-C5H4)-κ-N,O}Cl]Cl (1 or Ru-IM), that was found to be highly cytotoxic against a panel of cell lines resistant to cisplatin, including triple-negative breast cancer (TNBC) MDA-MB-231, through canonical or caspase-dependent apoptosis. Studies on a MDA-MB-231 xenograft mice model (after 28 days of treatment) afforded an excellent tumor reduction of 56%, with almost negligible systemic toxicity, and a favored ruthenium tumor accumulation compared to other organs. 1 is known to only interact weakly with DNA, but its intracellular distribution and ultimate targets remain unknown. To gain insight on potential mechanisms for this highly efficacious ruthenium compound, we have developed two luminescent analogues containing the BOPIPY fluorophore (or a modification) in the IM scaffold with the general structure of [(η6-p-cymene)Ru{(BODIPY-Ph2P═N-CO-2-NC5H4)-κ-N,O}Cl]Cl {BODIPY-Ph2P = 8-[(4-diphenylphosphino)phenyl]-4,4-dimethyl-1,3,5,7-tetramethyl-2,6-diethyl-4-bora-3a,4a-diaza-s-indacene (3a) and 4,4-difluoro-8-[4-[[2-[4-(diphenylphosphino)benzamido]ethyl]carbamoyl]phenyl]-1,3,5,7-tetramethyl,2,6-diethyl-4-bora-3a,4a-diaza-s-indacene (3b)}. We report on the synthesis, characterization, lipophilicity, stability, luminescence properties, and cell viability studies in the TNBC cell line MDA-MB-231, nonmalignant breast cells (MCF10a), and lung fibroblasts (IMR-90) of the new compounds. The ruthenium derivative 3b was studied by fluorescence confocal microscopy. These studies point to a preferential accumulation of the compound in the endoplasmic reticulum, mitochondria, and lysosomes. Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis also confirms a greater ruthenium accumulation in the cytoplasmic fraction, including endoplasmic reticulum and lysosomes, and a smaller percentage of accumulation in mitochondria and the nucleus. ICP-OES analysis of the parent compound 1 indicates that it accumulates preferentially in the mitochondria and cytoplasm. Subsequent experiments in 1-treated MDA-MB-231 cells demonstrate significant reactive oxygen species generation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。