Differential timing of mitochondrial activation in rat dorsal striatum induced by procedural learning and swimming

程序学习和游泳引起的大鼠背侧纹状体线粒体激活的差异时间

阅读:5
作者:Rogelio Pegueros-Maldonado, Antonio Fuentes-Ibañez, Mónica M Monroy, Oscar A Gutiérrez, Norma Serafín, Santiago M Pech-Pool, Mauricio Díaz-Muñoz, Gina L Quirarte

Abstract

Stressful experiences form stronger memories due to enhanced neural plasticity mechanisms linked to glucocorticoid hormones (cortisol in humans, corticosterone in rats). Among other neural structures, the dorsal striatum plays a role in the corticosterone-induced consolidation of stressful memories, particularly in the cued water maze task. Neural plasticity is related to mitochondrial activity due to the relevance of energy production and signaling mechanisms for functional and morphological neuronal adaptations. Corticosterone has been shown to enhance brain mitochondrial activity by activating glucocorticoid receptors. In this context, striatum functions are susceptible to change in relation to mitochondrial responses. Based on this evidence, we hypothesized that training in the cued water maze would induce an increase in corticosterone levels and mitochondrial activity (mitochondrial membrane potential and calcium content) in the dorsal striatum, and that these adaptations might be related to memory consolidation of the task. We used an ELISA assay to evaluate plasma and striatal corticosterone levels; mitochondrial activity was determined with the florescent probes MitoTracker Red (mitochondrial membrane potential) and Rhod-2 (calcium content) in brain slices containing the dorsal striatum of rats trained in the cued water maze and euthanized at different times after training (0.5, 1.5, or 6.0 h). We also analyzed the effect of post-training inhibition of striatal mitochondrial activity by OXPHOS complex 1 inhibitor rotenone, on the consolidation of the cued water maze task. We found that cued water maze training induced an increase in corticosterone levels and a time-dependent elevation of mitochondrial membrane potential and mitochondrial calcium content in the dorsal striatum. Unexpectedly, rotenone administration facilitated the retention test. Altogether, our results suggest that enhanced mitochondrial activity in the dorsal striatum is relevant for cued water maze consolidation. The increase in mitochondrial activity was contextually associated with an elevation of corticosterone in plasma and the dorsal striatum. Additionally, our swimming groups also showed an increase in mitochondrial activity in the dorsal striatum, but with a different pattern, which could suggest a differential functional adaptation in this structure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。