Increased small extracellular vesicle levels and decreased miR-126 levels associated with atrial fibrillation and coexisting diabetes mellitus

与心房颤动和共存糖尿病相关的小细胞外囊泡水平升高和 miR-126 水平降低

阅读:7
作者:Panjaree Siwaponanan, Pontawee Kaewkumdee, Payalak Sudcharee, Suthipol Udompunturak, Nusara Chomanee, Kamol Udol, Kovit Pattanapanyasat, Rungroj Krittayaphong

Background

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia. Diabetes mellitus (DM) is one of the risk factors for the development of stroke and thromboembolism in patients with AF. Early identification may reduce the incidence of complications and mortality in AF patients. Hypothesis: AF patients with DM have different pattern of small extracellular vesicle (sEV) levels and sEV-derived microRNA (miRNA) expression compared with those without DM.

Conclusions

These results suggest that an increased level of total sEV and a decreased sEV-miR-126 level may play a potential role in the pathophysiology and complications of AF with DM, especially endothelial dysfunction, and can be considered as an applied biomarker for distinguishing between AF with and without DM.

Methods

We compared sEV levels and sEV-miRNA expression in plasma from AF patients with and without DM using nanoparticle tracking analysis and droplet digital polymerase chain reaction, respectively.

Results

We observed a significant increase in total sEV levels (p = .004) and a significant decrease in sEV-miR-126 level (p = .004) in AF patients with DM. Multivariate logistic regression analysis revealed a positive association between total sEV levels and AF with DM (p = .019), and a negative association between sEV-miR-126 level and AF with DM (p = .031). The combination of clinical data, total sEVs, and sEV-miR-126 level had an area under the curve of 0.968 (p < .0001) for discriminating AF with DM, which was shown to be significantly better than clinical data analysis alone (p = .0368). Conclusions: These results suggest that an increased level of total sEV and a decreased sEV-miR-126 level may play a potential role in the pathophysiology and complications of AF with DM, especially endothelial dysfunction, and can be considered as an applied biomarker for distinguishing between AF with and without DM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。