Iron dysregulates APP processing accompanying with sAPPα cellular retention and β-secretase inhibition in rat cortical neurons

铁失调 APP 加工,伴随大鼠皮质神经元中 sAPPα 细胞滞留和 β-分泌酶抑制

阅读:5
作者:Yu-Ting Chen, Wu-Yan Chen, Xiao-Tian Huang, Ye-Chun Xu, Hai-Yan Zhang

Abstract

Amyloid precursor protein (APP) and iron both play pivotal roles in the central nervous system, but whether and how iron influences the processing of endogenous APP in neurons remain unclear. Here, we investigated the regulatory effects and underlying mechanisms of iron on non-amyloidogenic and amyloidogenic processing of APP in rat primary cortical neurons. Treatment of the neurons with ferric ammonium citrate (FAC, 100 μmol/L) markedly facilitated the non-amyloidogenic processing of APP, as evidenced by a robust increase in α-secretase-derived carboxy-terminal fragment α (CTFα). Furthermore, the distribution of sAPPα was altered after iron treatment, and sAPPα remained in the cellular lysates instead of being secreted into the extracellular milieu. Moreover, the levels of APP amyloidogenic products, including sAPPβ and Aβ were both decreased. We further revealed that FAC did not alter the expression of β-secretase, but significantly suppressed its enzymatic activity in iron-treated neurons. In a cell-free β-secretase activity assay, FAC dose-dependently inhibited the activity of purified β-secretase with an IC50 value of 21.67 μmol/L. Our data provide the first evidence that iron overload alters the neuronal sAPPα distribution and directly inhibits β-secretase activity. These findings shed light on the regulatory mechanism of bio-metals on APP processing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。