Curcumin effects on Leydig cell functions and potential therapeutic uses

姜黄素对 Leydig 细胞功能的影响及其潜在的治疗用途

阅读:7
作者:Trinidad Raices, María Luisa Varela, Adriana María Belén Abiuso, Elba N Pereyra, Carolina Mondillo, Omar P Pignataro, María Fernanda Riera

Abstract

Curcumin has been ascribed with countless therapeutic effects, but its impact on testicular function has been scarcely researched. Leydig cells comprise the androgen-secreting population of the testis and may give rise to Leydig cell tumours (LCTs). Due to their steroid-secreting nature, LCTs entail endocrine, reproductive, and psychological disorders. Approximately 10% are malignant and do not respond to chemotherapy and radiotherapy. The aim of this study was to assess curcumin's impact on Leydig cells' functions and its potential effect on LCT growth. In vitro assays on MA-10 Leydig cells showed that curcumin (20-80 µmol/L) stimulates acute steroidogenesis, both in the presence and absence of db-cAMP. This effect is accompanied by an increase in StAR expression. Regarding curcumin's in vitro cytostatic capacity, we show that 40-80 µmol/L curcumin reduces MA-10 Leydig cells' proliferative capacity, which could be explained by the arrest in G2/M and the reduced viability due to the activation of the apoptotic pathway. Finally, CB6F1 mice were inoculated with MA-10 cells to generate ectopic LCT in both flanks. They received i.p. injections of 20 mg/kg curcumin or vehicle every other day for 15 days. We unveiled curcumin's capacity to inhibit LCT growth as evidenced by reduced tumour volume, weight, and area under the growth curves. No detrimental effects on general health parameters or testicular integrity were observed. These results provide novel evidence of curcumin's effects on the endocrine cell population of the testis and propose this natural compound as a therapeutic agent for LCT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。