Immunomodulatory nanogels overcome restricted immunity in a murine model of gut microbiome-mediated metabolic syndrome

免疫调节纳米凝胶克服了肠道微生物组介导的代谢综合征小鼠模型中的免疫限制

阅读:6
作者:Matthew J Mosquera, Sungwoong Kim, Hao Zhou, Tina T Jing, Marysol Luna, Jason D Guss, Pooja Reddy, Kristine Lai, Cynthia A Leifer, Ilana L Brito, Christopher J Hernandez, Ankur Singh

Abstract

Biomaterials-based nanovaccines, such as those made of poly(lactic-co-glycolic acid) (PLGA), can induce stronger immunity than soluble antigens in healthy wild-type mouse models. However, whether metabolic syndrome can influence the immunological responses of nanovaccines remains poorly understood. Here, we first show that alteration in the sensing of the gut microbiome through Toll-like receptor 5 (TLR5) and the resulting metabolic syndrome in TLR5 -/- mice diminish the germinal center immune response induced by PLGA nanovaccines. The PLGA nanovaccines, unexpectedly, further changed gut microbiota. By chronically treating mice with antibiotics, we show that disrupting gut microbiome leads to poor vaccine response in an obesity-independent manner. We next demonstrate that the low immune response can be rescued by an immunomodulatory Pyr-pHEMA nanogel vaccine, which functions through TLR2 stimulation, enhanced trafficking, and induced stronger germinal center response than alum-supplemented PLGA nanovaccines. The study highlights the potential for immunomodulation under gut-mediated metabolic syndrome conditions using advanced nanomaterials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。