Postnatal development of dendritic synaptic integration in rat neocortical pyramidal neurons

大鼠新皮质锥体神经元树突突触整合的出生后发育

阅读:5
作者:Susan E Atkinson, Stephen R Williams

Abstract

The dendritic tree of layer 5 (L5) pyramidal neurons spans the neocortical layers, allowing the integration of intra- and extracortical synaptic inputs. Here we investigate the postnatal development of the integrative properties of rat L5 pyramidal neurons using simultaneous whole cell recording from the soma and distal apical dendrite. In young (P9-10) neurons, apical dendritic excitatory synaptic input powerfully drove action potential output by efficiently summating at the axonal site of action potential generation. In contrast, in mature (P25-29) neurons, apical dendritic excitatory input provided little direct depolarization at the site of action potential generation but was integrated locally in the apical dendritic tree leading to the generation of dendritic spikes. Consequently, over the first postnatal month the fraction of action potentials driven by apical dendritic spikes increased dramatically. This developmental remodeling of the integrative operations of L5 pyramidal neurons was controlled by a >10-fold increase in the density of apical dendritic Hyperpolarization-activated cyclic nucleotide (HCN)-gated channels found in cell-attached patches or by immunostaining for the HCN channel isoform HCN1. Thus an age-dependent increase in apical dendritic HCN channel density ensures that L5 pyramidal neurons develop from compact temporal integrators to compartmentalized integrators of basal and apical dendritic synaptic input.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。