Enzymatic Antioxidant Defense and Polymorphic Changes in Male Infertility

酶抗氧化防御和男性不育的多态性变化

阅读:4
作者:Jędrzej Baszyński, Piotr Kamiński, Maria Bogdzińska, Sławomir Mroczkowski, Marek Szymański, Karolina Wasilow, Emilia Stanek, Karolina Hołderna-Bona, Sylwia Brodzka, Rafał Bilski, Halyna Tkachenko, Natalia Kurhaluk, Tomasz Stuczyński, Małgorzata Lorek, Alina Woźniak

Abstract

The intensification of oxidative stress and destabilization of the antioxidative defenses of an organism is a consequence of many environmental factors. We considered aspects conditioning male reproductive potential and the functionality of enzymatic antioxidative mechanisms, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR), and their correlations with Li, Be, B, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Ag, Cd, Sn, Sb, Ba, Hg, Tl, Pb, and malondialdehyde (MDA), as well as genetic polymorphism IL-4v.C589T (rs2243250) in men with infertility (n = 76). A healthy normozoospermic control (n = 87) was also used. We assessed the impact of negative changes driven by oxidative stress on enzymatic antioxidative mechanisms as well as the role of MDA in the overall process. On this basis, we infer connections between disturbances in enzymatic antioxidative defense and reproductive potential. Based on a molecular analysis of the polymorphism of gene IL-4v.C589T (rs2243250) (chromosome 5) (PCR-RFLP), we considered the relationships among particular genotypes with the possibility of occurrence of male infertility. Concentrations of chemical elements were measured in the blood. The activity of antioxidants and MDA levels were measured in serum. In the infertile group, higher GPx activity was noted (6.56 nmoL·min-1·mL-1, control: 4.31 nmoL·min-1·mL-1; p = 0.004), while GR achieved a greater level in the control (17.74 nmoL·min-1·mL-1, infertile: 15.97 nmoL·min-1·mL-1, p = 0.043), which implies diversified efficiency of the first and second lines of defense. The polymorphism of IL-4v.C589T (rs2243250) was not directly connected with infertility because there were not any differences in the frequency of genotypes between the infertile and control group (p = 0.578). An analysis of genotypes CC and TT (polymorphism IL-4v.C589T (rs2243250)) indicated numerous correlations between antioxidants, chemical elements and MDA. Therefore, chemical economy, antioxidative defense and genetic conditions are connected and jointly shape male reproductive potential. Chemical elements influence antioxidative defense and male fertility; the most important modulators appeared to be Na, Ba, Al and B. The polymorphism of gene IL-4v.C589T (rs2243250) has a limited influence on antioxidative defense and the metabolism of chemical elements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。