Negative normal stress differences N1-N2 in a low concentration capillary suspension

低浓度毛细管悬浮液中的负法向应力差 N1-N2

阅读:6
作者:Irene Natalia, Nicole Zeiler, Moritz Weiß, Erin Koos

Abstract

Here, negative normal stress differences are reported in capillary suspensions, i.e. particle suspensions in a two-fluid system that creates strong capillary attractions, at a solid concentration of 25%, and a volume fraction that has heretofore been considered too low to show such normal stress differences. Such capillary suspensions have strong particle networks and are shear thinning for the entire range of shear rates studied. Capillary suspensions exist in two states: a pendular state when the secondary fluid preferentially wets the particles, and a capillary state when the bulk fluid is preferentially wetting. In the pendular state, the system undergoes a transition from a positive normal stress difference at high shear rates to a negative stress difference at low shear rates. These results are an indication of flexible flocs in the pendular state that are able to rotate to reorientate in the vorticity direction under shear. Analogous experiments were also conducted for the capillary state, where only a negative normal stress difference occurs. The capillary state system forms more network contacts due to droplet breakup at higher shear rates, which enhances the importance of hydrodynamic interactions in the non-colloidal suspension.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。