Abstract
The microenvironment of a tumour is an important factor in ovarian cancer metastasis. The present study aimed to simulate the in vivo microenvironment of an ovarian carcinoma using a co-culture system consisting of human lymphatic endothelial cells (HLECs) and human ovarian carcinoma cells with directional high lymphatic metastasis (SKOV3-PM4s) in order to investigate the role of both cell types in ovarian carcinoma metastasis. The SKOV3-PM4s cultured in the HLEC-conditioned medium exhibited increased numbers of pseudopodia and mitotic figures, proliferated at a faster rate and exhibited enhanced invasion and migratory abilities. Furthermore, the HLECs cultured in SKOV3-PM4-conditioned medium exhibited significant morphological alterations and vacuolisation of the cytoplasm, as well as increased invasion, migratory and tube forming abilities. In addition, spontaneous fusion of the SKOV3-PM4s and HLECs was observed in the co-culture system using laser confocal microscopy. The gelatin zymography assay demonstrated that matrix metalloproteinase-2, which was downregulated in the SKOV3-PM4s, was upregulated in the co-culture system. The results of the present study suggested that the invasion ability of the SKOV3-PM4s was increased in the in vitro co-culture system of SKOV3-PM4 and HLECs. Therefore, alterations in the cell microenvironment may represent a novel strategy for ovarian cancer therapy.
