Targeting folate receptor beta on monocytes/macrophages renders rapid inflammation resolution independent of root causes

靶向单核细胞/巨噬细胞上的叶酸受体β可使炎症迅速消退,且与病因无关。

阅读:2
作者:Yingjuan J Lu ,Leroy W Wheeler 2nd ,Haiyan Chu ,Paul J Kleindl ,Michael Pugh ,Fei You ,Satish Rao ,Gabriela Garcia ,Henry Y Wu ,Andre P da Cunha ,Richard Johnson ,Elaine Westrick ,Vicky Cross ,Alex Lloyd ,Christina Dircksen ,Patrick J Klein ,Iontcho R Vlahov ,Philip S Low ,Christopher P Leamon

Abstract

Provoked by sterile/nonsterile insults, prolonged monocyte mobilization and uncontrolled monocyte/macrophage activation can pose imminent or impending harm to the affected organs. Curiously, folate receptor beta (FRβ), with subnanomolar affinity for the vitamin folic acid (FA), is upregulated during immune activation in hematopoietic cells of the myeloid lineage. This phenomenon has inspired a strong interest in exploring FRβ-directed diagnostics/therapeutics. Previously, we have reported that FA-targeted aminopterin (AMT) therapy can modulate macrophage function and effectively treat animal models of inflammation. Our current investigation of a lead compound (EC2319) leads to discovery of a highly FR-specific mechanism of action independent of the root causes against inflammatory monocytes. We further show that EC2319 suppresses interleukin-6/interleukin-1β release by FRβ+ monocytes in a triple co-culture leukemic model of cytokine release syndrome with anti-CD19 chimeric antigen receptor T cells. Because of its chemical stability and metabolically activated linker, EC2319 demonstrates favorable pharmacokinetic characteristics and cross-species translatability to support future pre-clinical and clinical development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。